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It has been speculated that the potent antitumor agent 
dynemicin A (1) exerts its in vitro biological activity through the 
formation of the diradical 3.' Studies to design models that mimic 
dynemicin have been based upon this working hypothesis.2 

Scheme I outlines the notion that bioreduction of 1 triggers epoxide 
opening, followed by hydration to give the intermediate 2, which 
can cycloaromatize (Bergman reaction) to the diyl 3 and hydrogen 
atom abstract from the backbone of DNA to give 4, resulting in 
DNA cleavage. It has been generally assumed that the formation 
of a diradical intermediate is a prerequisite for biological activity.3 

In this paper we report that the simple azabicyclo[7.3.1] enediyne 
dynemicin core analogue 9 undergoes cycloaromatization via a 
polar nonradical pathway and exhibits both in vitro and in vivo 
antitumor activity. 

During the course of our studies on the synthesis and mechanism 
of action of 1 we have developed a short synthetic route to the 
azabicyclo[7.3.1] enediyne core structure 5 (Scheme H).4 A 
variety of carbamate nitrogen protecting groups have been 
employed that, in principle, can be removed using either acidic 
or basic conditions. Surprisingly, it was found that treatment of 
5 with PhS-Na+/THF at 0 0C, with the expectation of producing 
6, gave a completely aromatized product provisionally formulated 
as 10. Similarly, 7, 8, and 9 gave the adducts 11, 12, and 13, 
respectively. 

To enable characterization of the product(s) from this unex­
pected transformation we focused on the adamantyl carbamate 
8, since this compound can be readily deprotected to give the 
secondary amine 9 by treatment with CF3CO2H (TFA)/CH2-
Cl2/room temperature. Treatment of 8 with sodium 3,5-
dimethylthiophenolate/THF at 0 0C gave a mixture of two 
compounds 14 (ca. 1:1; Scheme III), which upon deprotection 
(TFA, 95%) gave a single completely aromatized adduct 15 
(structure by X-ray).5 Conducting the above reaction in THF-
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Scheme I 

Scheme II 

5 (R = CO2CH2CH2CI) 
6 (R = CO2CH2CH2SPh) 
7 (R = CO2Me) 
8 (R = CO2Ad) 
9 (R = H) 

10(R = CO2CH2CH2SPh) 
11 (R = CO2Me) 
12 (R = CO2Ad) 
13 (R = H) 

Scheme III 

14 (mixture of disstsrsomers) 15 

ArS-NeVTHF 
excess NsH 

d% did not result in any deuterium incorporation into 14 or 15, 
thus precluding a radical intermediate in the conversion of 8 into 
14. Treatment of 8 with sodium 3,5-dimethylthiophenolate/ 
THF/excess NaH at O 0C gave the naphthol 16 (44%). Carrying 
out the same transformation in the presence of MeOD gave 16a 
with the incorporation of two deuterium atoms in the positions 
shown. Excess NaH converted 14 into 16 (72%). Irradiation of 
8 with PhSSPh/benzene resulted in slow decomposition to an 
intractable mixture. 

A plausible mechanistic explanation for this unprecedented 
reaction involves thiolate addition to the enediyne 8 to give the 
cumulene 8a, which can undergo further thiolate addition resulting 
in the enolate 8b.6 Enolate anion ring closure to 8c followed by 

(5) The reaction mixture contains a small amount of the bridgehead 
sulfenylated compound i. An authentic sample of i was made by treatment 
of 8 with LiHMDS/THF/(ArS)2. 
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Scheme IV 

protonation and tautomerism results in 8d, which gives 14. It 
should be noted that 8 (X = OMe) does not undergo the normal 
Bergman cycloaromatization to give 17 at an appreciable rate 
until it is heated to at least 97 0C (f i/2 = 8.26 h).7 The mechanism 
shown in Scheme IV is consistent with the MeOD experiment, 
although it is possible that the deuterium para to the OH was 
introduced by base-catalyzed exchange after elimination of ArS. 

Myers has shown that neocarzinostatin chromophore undergoes 
thiol addition to trigger cycloaromatization. The actual cy­
cloaromatization reaction involves a diradical which has been 
trapped by THF-^g-8 It has been shown by Saito that there is 
a second pathway available for the cycloaromatization of 
neocarzinostatin. Under physiological conditions (D20/buffered 
2-mercaptoethanol), neocarzinostatin cycloaromatizes with the 
incorporation of one deuterium atom (80%) in the aromatic ring.9 

This duality of cycloaromatization mechanisms, diradical and 
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polar, has not been seen in any other enediynes. This study shows 
that the dynemicin core analogue 8 can undergo cycloaromati­
zation to 17 via the "normal" thermal (97 0C) diradical 
cycloaromatization pathway, and in the presence of thiolate (0 
0C), a polar cycloaromatization pathway intervenes to give 14/ 
16. The secondary amine 9 on treatment with ArS-Na+/THF, 
followed by acidification, gave the benzocarbazole 15. 

The core azabicyclo[7.3.1 ] enediyne compounds 9 (X = H and 
OMe) showed good in vivo potency and activity (efficacy, T/C 
> 125%) in P388 leukemia assays using CDFl mice (2 mg/kg 
gave T/C values of 175% and 170%, respectively). Kedarcidin 
gave a T/C of 175% at 2.4 mg/kg. In a distal solid tumor model, 
which measured delay in tumor growth of a subcutaneous M109 
lung carcinoma,10 9 (X = OMe) was active (T-C = 7.5 days) 
when administered intravenously every 2 days, beginning on the 
day of tumor implant for a total of five doses of 1.2 mg kg-1 

dose-1. Using the same model and schedule, 9 (X = H) was 
found to be marginally active (T-C = 3.0 days) while esperamicin 
(T-C = 11.0 days at 0.05 mg kg-1 dose-1) and neocarzinostatin 
(T-C = 19.3 days at 0.6 mg kg-1 dose-1) were more active. In 
vitro cytotoxicity, assessed in HCTl 16 human colon carcinoma 
cells, showed that 9 (X = H) was 350 times more potent than 
8 (X = H) (IC50's of 0.21 and 75 nM, respectively). 

It can be concluded that diradical formation is not a prerequisite 
for biological activity. 
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